9,047 research outputs found

    Earthworm abundances in endophyte-infected tall fescue pastures in Northwest Arkansas

    Get PDF
    The ecology of organisms that co-evolve within an ecosystem is likely to be distinct from that involving organisms recently introduced into an area. To better understand the relationship of earthworms with endophyte-infected tall fescue, earthworms in novel and toxic endophyte-infected tall fescue pastures were enumerated and identified as adults or juveniles. We hypothesized that differences in endophyte infection of the fescue would influence earthworm abundances. Earthworms in two toxic and two novel endophyte-infected tall fescue fields in Fayetteville, Ark., were sampled weekly from January through July 2007. Each type of endophyte-infected pasture was established in 1997 and 2003. Sampling was carried out utilizing a physical dig-and-sort extraction method. Although variable, sampling time was a significant factor in the number of adult and juvenile worms collected. Adult earthworm abundances showed a seasonal trend of declining numbers from winter to summer, while juvenile worms showed an increase from winter to summer. Previous studies have shown that endophyte infection of plants can impact soil organisms. In this study, type of fungal endophyte infection did not appear to impact earthworm abundances; therefore, use of novel endophyte-infected fescue in a pasture is not expected to have an impact on the ecology of earthworms

    Nonlinear Breathing-like Localized Modes in C60 Nanocrystals

    Get PDF
    We study the dynamics of nanocrystals composed of C60 fullerene molecules. We demonstrate that such structures can support long-lived strongly localized nonlinear oscillatory modes, which resemble discrete breathers in simple lattices. We reveal that at room temperatures the lifetime of such nonlinear localized modes may exceed tens of picoseconds; this suggests that C60 nanoclusters should demonstrate anomalously slow thermal relaxation when the temperature gradient decays in accord to a power law, thus violating the Cattaneo-Vernotte law of thermal conductivity.Comment: 6 pages, 6 figure

    Non-stationary heat conduction in one-dimensional chains with conserved momentum

    Full text link
    The Letter addresses the relationship between hyperbolic equations of heat conduction and microscopic models of dielectrics. Effects of the non-stationary heat conduction are investigated in two one-dimensional models with conserved momentum: Fermi-Pasta-Ulam (FPU) chain and chain of rotators (CR). These models belong to different universality classes with respect to stationary heat conduction. Direct numeric simulations reveal in both models a crossover from oscillatory decay of short-wave perturbations of the temperature field to smooth diffusive decay of the long-wave perturbations. Such behavior is inconsistent with parabolic Fourier equation of the heat conduction. The crossover wavelength decreases with increase of average temperature in both models. For the FPU model the lowest order hyperbolic Cattaneo-Vernotte equation for the non-stationary heat conduction is not applicable, since no unique relaxation time can be determined.Comment: 4 pages, 5 figure

    Is H3+ cooling ever important in primordial gas?

    Get PDF
    Studies of the formation of metal-free Population III stars usually focus primarily on the role played by H2 cooling, on account of its large chemical abundance relative to other possible molecular or ionic coolants. However, while H2 is generally the most important coolant at low gas densities, it is not an effective coolant at high gas densities, owing to the low critical density at which it reaches local thermodynamic equilibrium (LTE) and to the large opacities that develop in its emission lines. It is therefore possible that emission from other chemical species may play an important role in cooling high density primordial gas. A particularly interesting candidate is the H3+ molecular ion. This ion has an LTE cooling rate that is roughly a billion times larger than that of H2, and unlike other primordial molecular ions such as H2+ or HeH+, it is not easily removed from the gas by collisions with H or H2. It is already known to be an important coolant in at least one astrophysical context -- the upper atmospheres of gas giants -- but its role in the cooling of primordial gas has received little previous study. In this paper, we investigate the potential importance of H3+ cooling in primordial gas using a newly-developed H3+ cooling function and the most detailed model of primordial chemistry published to date. We show that although H3+ is, in most circumstances, the third most important coolant in dense primordial gas (after H2 and HD), it is nevertheless unimportant, as it contributes no more than a few percent of the total cooling. We also show that in gas irradiated by a sufficiently strong flux of cosmic rays or X-rays, H3+ can become the dominant coolant in the gas, although the size of the flux required renders this scenario unlikely to occur.Comment: 60 pages, 22 figures. Submitted to MNRA

    AN EXPERIMENTAL INVESTIGATION IN AN ATMOSPHERE ENTRY SIMULATOR OF NYLON AS AN ABLATIVE MATERIAL FOR BALLISTIC MISSILES

    Get PDF
    Investigation in atmosphere entry simulator of nylon as ablative material for ballistic missile

    Van der Waals forces in density functional theory: perturbational long-range electron interaction corrections

    Full text link
    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a "range-separated hybrid" functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well-adapted to describe van der Waals complexes, like rare gas dimers.Comment: 8 pages, 1 figure, submitted to Phys. Rev.

    Elliptic operators in odd subspaces

    Full text link
    An elliptic theory is constructed for operators acting in subspaces defined via odd pseudodifferential projections. Subspaces of this type arise as Calderon subspaces for first order elliptic differential operators on manifolds with boundary, or as spectral subspaces for self-adjoint elliptic differential operators of odd order. Index formulas are obtained for operators in odd subspaces on closed manifolds and for general boundary value problems. We prove that the eta-invariant of operators of odd order on even-dimesional manifolds is a dyadic rational number.Comment: 27 page
    corecore